Year
Month
(Peer-Reviewed) Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
Tong Nan 南通 ¹ ², Huan Zhao 赵欢 ³, Jinying Guo 郭劲英 ⁴ ⁵, Xinke Wang 王新柯 ², Hao Tian 田浩 ¹, Yan Zhang 张岩 ²
¹ School of Physics, Harbin Institute of Technology, Harbin 150001, China
中国 哈尔滨 哈尔滨工业大学物理学院
² Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
中国 北京 首都师范大学物理系 北京成像技术高精尖创新中心 太赫兹光电子学教育部重点实验室 超材料与器件北京市重点实验室
³ Institute of Microelectronics Chinese Academy of Sciences, Beijing 100029, China
中国 北京 中国科学院微电子研究所
⁴ Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
中国 上海 中国科学院上海光学精密机械研究所
⁵ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学材料科学与光电技术学院
Opto-Electronic Science, 2024-05-28
Abstract

Conventionally, the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams' spatial transmission trajectory. In particular, along the optical axis, the polarization state is either constant or varies continuously in each output plane. Here, we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.

With tri-layer metallic metasurfaces, the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz (THz) wave. The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes. We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory. Continuous linear polarization changes and linear polarization to right circular polarization (RCP) and back to linear polarization changes are realized respectively.

The experimental results are basically consistent with the simulated results. Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission. This technique has potential uses in optical encryption, particle manipulation, and biomedical imaging.
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces_1
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces_2
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces_3
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces_4
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25



  • Photo-driven fin field-effect transistors                                Towards the performance limit of catenary meta-optics via field-driven optimization
    About
    |
    Contact
    |
    Copyright © PubCard