Year
Month
(Peer-Reviewed) Encoding physics to learn reaction–diffusion processes
Chengping Rao 饶成平 ¹ ², Pu Ren 任普 ³, Qi Wang 王琦 ¹, Oral Buyukozturk ⁴, Hao Sun 孙浩 ¹ ⁵, Yang Liu 刘扬 ⁶
¹ Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
中国 北京 中国人民大学高瓴人工智能学院
² Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
³ Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
⁴ Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
⁵ Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China
中国 北京 大数据管理与分析方法研究北京市重点实验室
⁶ School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
中国 北京 中国科学院大学 工程科学学院
Nature Machine Intelligence, 2023-07-17
Abstract

Modelling complex spatiotemporal dynamical systems, such as reaction–diffusion processes, which can be found in many fundamental dynamical effects in various disciplines, has largely relied on finding the underlying partial differential equations (PDEs). However, predicting the evolution of these systems remains a challenging task for many cases owing to insufficient prior knowledge and a lack of explicit PDE formulation for describing the nonlinear process of the system variables.

With recent data-driven approaches, it is possible to learn from measurement data while adding prior physics knowledge. However, existing physics-informed machine learning paradigms impose physics laws through soft penalty constraints, and the solution quality largely depends on a trial-and-error proper setting of hyperparameters. Here we propose a deep learning framework that forcibly encodes a given physics structure in a recurrent convolutional neural network to facilitate learning of the spatiotemporal dynamics in sparse data regimes.

We show with extensive numerical experiments how the proposed approach can be applied to a variety of problems regarding reaction–diffusion processes and other PDE systems, including forward and inverse analysis, data-driven modelling and discovery of PDEs. We find that our physics-encoding machine learning approach shows high accuracy, robustness, interpretability and generalizability.
Encoding physics to learn reaction–diffusion processes_1
Encoding physics to learn reaction–diffusion processes_2
Encoding physics to learn reaction–diffusion processes_3
Encoding physics to learn reaction–diffusion processes_4
  • Three-dimensional multichannel waveguide grating filters
  • Si-Yu Yin, Qi Guo, Shan-Ren Liu, Ju-Wei He, Yong-Sen Yu, Zhen-Nan Tian, Qi-Dai Chen
  • Opto-Electronic Science
  • 2024-08-14
  • Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
  • Shibin Jiang, Wenjun Deng, Zhanshan Wang, Xinbin Cheng, Din Ping Tsai, Yuzhi Shi, Weiming Zhu
  • Opto-Electronic Science
  • 2024-07-26
  • Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
  • Zuntian Chu, Xinqi Cai, Ruichao Zhu, Tonghao Liu, Huiting Sun, Tiefu Li, Yuxiang Jia, Yajuan Han, Shaobo Qu, Jiafu Wang
  • Opto-Electronic Advances
  • 2024-07-26
  • Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
  • Lei Zhang, Yuqi Zhen, Limin Tong
  • Opto-Electronic Science
  • 2024-07-26
  • Soliton microcomb generation by cavity polygon modes
  • Botao Fu, Renhong Gao, Ni Yao, Haisu Zhang, Chuntao Li, Jintian Lin, Min Wang, Lingling Qiao, Ya Cheng
  • Opto-Electronic Advances
  • 2024-07-25
  • Focus control of wide-angle metalens based on digitally encoded metasurface
  • Yi Chen, Simeng Zhang, Ying Tian, Chenxia Li, Wenlong Huang, Yixin Liu, Yongxing Jin, Bo Fang, Zhi Hong, Xufeng Jing
  • Opto-Electronic Advances
  • 2024-07-23
  • Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
  • Sören im Sande, Yadong Deng, Sergey I. Bozhevolnyi, Fei Ding
  • Opto-Electronic Advances
  • 2024-07-23
  • An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption
  • Ang Li, Yifan Wu, Chang Wang, Feixia Bao, Zongyin Yang, Shilong Pan
  • Opto-Electronic Advances
  • 2024-07-17
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05



  • High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications                                Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field
    About
    |
    Contact
    |
    Copyright © PubCard