(Peer-Reviewed) Intelligent metaphotonics empowered by machine learning
Sergey Krasikov ¹ ², Aaron Tranter ³, Andrey Bogdanov ², Yuri Kivshar ¹
¹ Nonlinear Physics Center, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
² School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
³ Centre for Quantum Computation and Communication Technology, Department of Quantum Science, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Opto-Electronic Advances, 2022-03-25
Abstract
In the recent years, a dramatic boost of the research is observed at the junction of photonics, machine learning and artificial intelligence. A new methodology can be applied to the description of a variety of photonic systems including optical waveguides, nanoantennas, and metasurfaces. These novel approaches underpin the fundamental principles of light-matter interaction developed for a smart design of intelligent photonic devices.
Artificial intelligence and machine learning penetrate rapidly into the fundamental physics of light, and they provide effective tools for the study of the field of metaphotonics driven by optically induced electric and magnetic resonances. Here we overview the evaluation of metaphotonics induced by artificial intelligence and present a summary of the concepts of machine learning with some specific examples developed and demonstrated for metasystems and metasurfaces.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25