Year
Month
(Peer-Reviewed) Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice
Jinglin Guo 郭景琳 ¹, Juan Peng 彭娟 ², Jing Han 韩晶 ¹, Ke Wang 王珂 ³, Ruijuan Si 司瑞娟 ¹, Hui Shan 山慧 ¹, Xiaoying Wang 王晓莹 ¹, Ju Zhang 张菊 ¹
¹ School of Nursing, Qingdao University, Qingdao 266071, China
中国 青岛 青岛大学护理学院
² Surgery of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
中国 天津 天津中医药大学第二附属医院中医外科
³ School of Pharmacy, Qingdao University, Qingdao 266071, China
中国 青岛 青岛大学药学院
Abstract

Objective

To investigate the role of Portulaca oleracea (POL) in promoting revascularization and re-epithelization as well as inhibiting iron aggregation and inflammation of deep tissue pressure injury (DTPI).

Methods

The hydroalcoholic extract of POL (P) and aqueous phase fraction of POL (PD) were prepared based on maceration and liquid–liquid extraction. The number of new blood vessels and VEGF-A expression level were assessed using H&E stain and Western blot on injured muscle to examine the role of POL different extracts in vascularization. The iron distribution and total elemental iron of injured muscle were detected using laser ablation inductively coupled plasma mass spectrometry (ICP-MS) and Perls’ staining to determine whether POL extracts can inhibit the iron accumulation. Besides, the ability of POL extracts to promote wound healing by combining re-epithelization time, inflammation degree and collagen deposition area were comprehensively evaluated.

Results

In vitro, we observed a significant increase in HUVEC cell viability, migration rate and the number of the tube after P and PD treatment (P < 0.05). In vivo, administration of P and PD impacted vascularization and iron accumulation on injured tissue, evident from more new blood vessels, higher expression of VEGF-A and decreased muscle iron concentration of treatment groups compared with no-treatment groups (P < 0.05). Besides, shorter re-epithelization time, reduced inflammatory infiltration and distinct collagen deposition were associated with administration of P and PD (P < 0.05).

Conclusion

POL extract administration groups have high-quality wound healing, which is associated with increased new blood vessels, collagen deposition and re-epithelization, along with decreased iron accumulation and inflammatory infiltration. Our results suggest that that POL extract is beneficial to repair injured muscle after ischemia–reperfusion, highlighting the potential of POL in the DTPI treatment.
Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice_1
Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice_2
Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice_3
Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice_4
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03
  • Smart reconfigurable metadevices made of shape memory alloy metamaterials
  • Shiqiang Zhao, Yuancheng Fan, Ruisheng Yang, Zhehao Ye, Fuli Zhang, Chen Wang, Weijia Luo, Yongzheng Wen, Ji Zhou
  • Opto-Electronic Advances
  • 2025-01-03
  • Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection
  • Xingfeng Li, Jingchi Li, Xiong Ni, Hudi Liu, Qunbi Zhuge, Haoshuo Chen, William Shieh, Yikai Su
  • Opto-Electronic Science
  • 2024-12-24
  • Enhanced amplified spontaneous emission via splitted strong coupling mode in large-area plasmonic cone lattices
  • Jiazhi Yuan, Jiang Hu, Yan Zheng, Hao Wei, Jiamin Xiao, Yi Wang, Xuchao Zhao, Ye Xiang, Yong Lei, Wenxin Wang
  • Opto-Electronic Science
  • 2024-12-19
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23



  • Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications                                Applications of optically and electrically driven nanoscale bowtie antennas
    About
    |
    Contact
    |
    Copyright © PubCard