Year
Month
(Peer-Reviewed) Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice
Jinglin Guo 郭景琳 ¹, Juan Peng 彭娟 ², Jing Han 韩晶 ¹, Ke Wang 王珂 ³, Ruijuan Si 司瑞娟 ¹, Hui Shan 山慧 ¹, Xiaoying Wang 王晓莹 ¹, Ju Zhang 张菊 ¹
¹ School of Nursing, Qingdao University, Qingdao 266071, China
中国 青岛 青岛大学护理学院
² Surgery of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
中国 天津 天津中医药大学第二附属医院中医外科
³ School of Pharmacy, Qingdao University, Qingdao 266071, China
中国 青岛 青岛大学药学院
Abstract

Objective

To investigate the role of Portulaca oleracea (POL) in promoting revascularization and re-epithelization as well as inhibiting iron aggregation and inflammation of deep tissue pressure injury (DTPI).

Methods

The hydroalcoholic extract of POL (P) and aqueous phase fraction of POL (PD) were prepared based on maceration and liquid–liquid extraction. The number of new blood vessels and VEGF-A expression level were assessed using H&E stain and Western blot on injured muscle to examine the role of POL different extracts in vascularization. The iron distribution and total elemental iron of injured muscle were detected using laser ablation inductively coupled plasma mass spectrometry (ICP-MS) and Perls’ staining to determine whether POL extracts can inhibit the iron accumulation. Besides, the ability of POL extracts to promote wound healing by combining re-epithelization time, inflammation degree and collagen deposition area were comprehensively evaluated.

Results

In vitro, we observed a significant increase in HUVEC cell viability, migration rate and the number of the tube after P and PD treatment (P < 0.05). In vivo, administration of P and PD impacted vascularization and iron accumulation on injured tissue, evident from more new blood vessels, higher expression of VEGF-A and decreased muscle iron concentration of treatment groups compared with no-treatment groups (P < 0.05). Besides, shorter re-epithelization time, reduced inflammatory infiltration and distinct collagen deposition were associated with administration of P and PD (P < 0.05).

Conclusion

POL extract administration groups have high-quality wound healing, which is associated with increased new blood vessels, collagen deposition and re-epithelization, along with decreased iron accumulation and inflammatory infiltration. Our results suggest that that POL extract is beneficial to repair injured muscle after ischemia–reperfusion, highlighting the potential of POL in the DTPI treatment.
Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice_1
Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice_2
Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice_3
Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice_4
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28



  • Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications                                Applications of optically and electrically driven nanoscale bowtie antennas
    About
    |
    Contact
    |
    Copyright © PubCard