Year
Month
(Peer-Reviewed) Ferroelectric domain engineering of lithium niobate
Jackson J. Chakkoria ¹ ², Aditya Dubey ¹ ², Arnan Mitchell ¹ ², Andreas Boes ² ³ ⁴
¹ Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
² ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS)
³ School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
⁴ Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
Opto-Electronic Advances, 2025-01-03
Abstract

Lithium niobate (LN) has remained at the forefront of academic research and industrial applications due to its rich material properties, which include second-order nonlinear optic, electro-optic, and piezoelectric properties. A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN, which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.

In this review paper, we provide an overview of the domain engineering techniques developed for LN, their principles, and the typical domain size and pattern uniformity they provide, which is important for devices that require high-resolution domain patterns with good reproducibility. It also highlights each technique's benefits, limitations, and adaptability for an application, along with possible improvements and future advancement prospects.

Further, the review provides a brief overview of domain visualization methods, which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform, which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.
Ferroelectric domain engineering of lithium niobate_1
Ferroelectric domain engineering of lithium niobate_2
Ferroelectric domain engineering of lithium niobate_3
Ferroelectric domain engineering of lithium niobate_4
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25



  • Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection                                Smart reconfigurable metadevices made of shape memory alloy metamaterials
    About
    |
    Contact
    |
    Copyright © PubCard