Year
Month
(Peer-Reviewed) Ferroelectric domain engineering of lithium niobate
Jackson J. Chakkoria ¹ ², Aditya Dubey ¹ ², Arnan Mitchell ¹ ², Andreas Boes ² ³ ⁴
¹ Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
² ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS)
³ School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
⁴ Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
Opto-Electronic Advances, 2025-01-03
Abstract

Lithium niobate (LN) has remained at the forefront of academic research and industrial applications due to its rich material properties, which include second-order nonlinear optic, electro-optic, and piezoelectric properties. A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN, which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.

In this review paper, we provide an overview of the domain engineering techniques developed for LN, their principles, and the typical domain size and pattern uniformity they provide, which is important for devices that require high-resolution domain patterns with good reproducibility. It also highlights each technique's benefits, limitations, and adaptability for an application, along with possible improvements and future advancement prospects.

Further, the review provides a brief overview of domain visualization methods, which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform, which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.
Ferroelectric domain engineering of lithium niobate_1
Ferroelectric domain engineering of lithium niobate_2
Ferroelectric domain engineering of lithium niobate_3
Ferroelectric domain engineering of lithium niobate_4
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03



  • Smart reconfigurable metadevices made of shape memory alloy metamaterials
    About
    |
    Contact
    |
    Copyright © PubCard