(Peer-Reviewed) Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction
Hui Gao 高辉 ¹ ², Xuhao Fan 范旭浩 ¹, Yuxi Wang 王玉西 ¹, Yuncheng Liu 刘耘呈 ¹, Xinger Wang 王星儿 ¹, Ke Xu 许可 ¹, Leimin Deng 邓磊敏 ¹ ², Cheng Zeng 曾成 ¹, Tingan Li 李廷安 ¹, Jinsong Xia 夏金松 ¹ ², Wei Xiong 熊伟 ¹ ²
¹ Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家实验室
² Optics Valley Laboratory, Wuhan 430074, China
中国 武汉 光谷实验室
Opto-Electronic Science, 2023-03-30
Abstract
Multispectral and polarized focusing and imaging are key functions that are vitally important for a broad range of optical applications. Conventional techniques generally require multiple shots to unveil desired optical information and are implemented via bulky multi-pass systems or mechanically moving parts that are difficult to integrate into compact and integrated optical systems. Here, a design of ultra-compact transversely dispersive metalens capable of both spectrum and polarization ellipticity recognition and reconstruction in just a single shot is demonstrated with both coherent and incoherent light.
Our design is well suited for integrated and high-speed optical information analysis and can significantly reduce the size and weight of conventional devices while simplifying the process of collecting optical information, thereby promising for various applications, including machine vision, minimized spectrometers, material characterization, remote sensing, and other areas which require comprehensive optical analysis.
Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
Opto-Electronic Advances
2024-07-05