Year
Month
(Peer-Reviewed) Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state
Qiang LIU 刘强 ¹, Qi MIN 敏琦 ¹ ², Maogen SU 苏茂根 ¹ ², Xingbang LIU 刘兴邦 ¹, Shiquan CAO 曹世权 ¹ ², Duixiong SUN 孙对兄 ¹ ², Chenzhong DONG 董晨钟 ¹ ², Yanbiao FU 符彦飙 ¹ ²
¹ Key Laboratory of Atomic and Molecular Physics and Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
中国 兰州 西北师范大学物理与电子工程学院 甘肃省原子分子物理与功能材料重点实验室
² Joint Laboratory of Atomic and Molecular Physics, Northwest Normal University and Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou 730070, People's Republic of China
中国 兰州 西北师范大学 中国科学院近代物理研究所 极端环境原子分子物理联合实验室
Abstract

Based on the governing equations which include the heat conduction equation in the target and the fluid equations of the vapor plasma, a two-dimensional axisymmetric model for ns-laser ablation considering the Knudsen layer and plasma shielding effect is developed. The equations of state of the plasma are described by a real gas approximation, which divides the internal energy into the thermal energy of atoms, ions and electrons, ionization energy and the excitation energy of atoms and ions.

The dynamic evolution of the silicon target and plasma during laser ablation is studied by using this model, and the distributions of the temperature, plasma density, Mach number related to the evaporation/condensation of the target surface, laser transmissivity as well as internal energy of the plasma are given.

It is found that the evolution of the target surface during laser ablation can be divided into three stages: (1) the target surface temperature increases continuously; (2) the sonic and subsonic evaporation; and (3) the subsonic condensation. The result of the internal energy distribution indicates that the ionization and excitation energy plays an important role in the internal energy of the plasma during laser ablation. This model is suitable for the case that the temperature of the target surface is lower than the critical temperature.
Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state_1
Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state_2
Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state_3
Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Involvement of glucose transporter 4 in ovarian development and reproductive maturation of Harmonia axyridis (Coleoptera: Coccinellidae)                                Cloning and Characterization of Protein Prenyltransferase Alpha Subunit in Rice
    About
    |
    Contact
    |
    Copyright © PubCard