Year
Month
(Peer-Reviewed) Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation
Qianliang Li ¹, Walter Perrie ¹, Zhaoqing Li ², Stuart P Edwardson ¹, Geoff Dearden ¹
¹ Laser Engineering Group, School of Engineering, University of Liverpool, Liverpool, L69 3GQ, United Kingdom
² Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
Opto-Electronic Advances, 2022-01-25
Abstract

The optical nonlinearity in polycrystalline zinc selenide (ZnSe), excited with 775 nm, 1 kHz femtosecond laser pulses was investigated via the nonlinear transmission with material thickness and the Z scan technique. The measured two photon absorption coefficient β was intensity dependent, inferring that reverse saturated absorption (RSA) is also relevant during high intensity excitation in ZnSe.

At low peak intensity I < 5 GW cm⁻², we find β = 3.5 cm GW⁻¹ at 775 nm. The spectral properties of the broad blueish two-photon induced fluorescence (460 nm-500 nm) was studied, displaying self-absorption near the band edge while the upper state lifetime was measured to be τe ~ 3.3 ns. Stimulated emission was observed when pumping a 0.5 mm thick polycrystalline ZnSe sample within an optical cavity, confirmed by significant line narrowing from Δλ = 11 nm (cavity blocked) to Δλ = 2.8 nm at peak wavelength λp = 475 nm while the upper state lifetime also decreased.

These results suggest that with more optimum pumping conditions and crystal cooling, polycrystalline ZnSe might reach lasing threshold via two-photon pumping at λ = 775 nm.
Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation_1
Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation_2
Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation_3
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03



  • Benchmarking deep learning-based models on nanophotonic inverse design problems                                SSP IMEX Runge-Kutta WENO Scheme for Generalized Rosenau-KdV-RLW Equation
    About
    |
    Contact
    |
    Copyright © PubCard