(Peer-Reviewed) Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation
Qianliang Li ¹, Walter Perrie ¹, Zhaoqing Li ², Stuart P Edwardson ¹, Geoff Dearden ¹
¹ Laser Engineering Group, School of Engineering, University of Liverpool, Liverpool, L69 3GQ, United Kingdom
² Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
Opto-Electronic Advances, 2022-01-25
Abstract
The optical nonlinearity in polycrystalline zinc selenide (ZnSe), excited with 775 nm, 1 kHz femtosecond laser pulses was investigated via the nonlinear transmission with material thickness and the Z scan technique. The measured two photon absorption coefficient β was intensity dependent, inferring that reverse saturated absorption (RSA) is also relevant during high intensity excitation in ZnSe.
At low peak intensity I < 5 GW cm⁻², we find β = 3.5 cm GW⁻¹ at 775 nm. The spectral properties of the broad blueish two-photon induced fluorescence (460 nm-500 nm) was studied, displaying self-absorption near the band edge while the upper state lifetime was measured to be τe ~ 3.3 ns. Stimulated emission was observed when pumping a 0.5 mm thick polycrystalline ZnSe sample within an optical cavity, confirmed by significant line narrowing from Δλ = 11 nm (cavity blocked) to Δλ = 2.8 nm at peak wavelength λp = 475 nm while the upper state lifetime also decreased.
These results suggest that with more optimum pumping conditions and crystal cooling, polycrystalline ZnSe might reach lasing threshold via two-photon pumping at λ = 775 nm.
Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
Opto-Electronic Advances
2024-07-05