Year
Month
(Peer-Reviewed) Early planetary processes and light elements in iron-dominated cores
Chaojia Lv 吕超甲 ¹, Jin Liu 刘锦 ¹ ²
¹ Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
中国 北京 北京高压科学研究中心
² CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
中国 广州 中国科学院 深地科学卓越创新中心
Acta Geochimica, 2022-01-21
Abstract

This paper discusses the latest research on the accretion and differentiation of terrestrial planets and multidisciplinary constraints on light elements in iron-dominated metallic cores. The classic four-stage model of terrestrial planet formation advocates slow and local accretion. Meanwhile, the pebble accretion model suggests fast accretion for planets, while the Grand Tack model provides heterogeneous accretion mechanisms.

Terrestrial planets and small interstellar bodies may have experienced at least some degree of partial melting due to the three primary energy sources (i.e., the decay of short-lived radioactive nuclides, the kinetic energy delivered by impacts, and the conversion of gravitational potential energy). Together with metal-silicate separation mechanisms, the magma ocean theory depicts the pattern of core formation in terrestrial planets.

Several hypotheses have been proposed to explain the concentration of siderophile elements in the mantle, including the single-stage, continuous, and multistage core formation models, and the late-veneer model. Some light elements have been postulated in the core to account for Earth’s outer core density deficit.

A plethora of constraints on the species and concentration of light elements have been put forward from the perspectives of cosmochemical and geochemical fingerprints, geophysical observations, mineral physics, numerical modeling, and theoretical prediction. Si and O may be the two leading candidates for Earth’s outer core light elements; however, it still remains an open question. S is another potential light element in Earth’s core, most likely with less than 2 wt%. Other light elements including H and C, may not exceed 1 wt% in the core.

Moreover, the accretion and differentiation history would provide some clues to light elements in other terrestrial planetary cores. In principle, a larger heliocentric distance corresponds to accretion from more oxidized materials, leading to a higher S concentration in the Martian core. On the contrary, Mercury is close to the Sun and has accreted from more reduced materials, resulting in more Si in the core.
Early planetary processes and light elements in iron-dominated cores_1
Early planetary processes and light elements in iron-dominated cores_2
Early planetary processes and light elements in iron-dominated cores_3
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03



  • Mitigation of time-series InSAR turbulent atmospheric phase noise: A review                                Propagation characteristics of acoustic waves in a borehole surrounded by a viscoelastic medium with horizontal cracks
    About
    |
    Contact
    |
    Copyright © PubCard