(Peer-Reviewed) Early planetary processes and light elements in iron-dominated cores
Chaojia Lv 吕超甲 ¹, Jin Liu 刘锦 ¹ ²
¹ Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
中国 北京 北京高压科学研究中心
² CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
中国 广州 中国科学院 深地科学卓越创新中心
Abstract
This paper discusses the latest research on the accretion and differentiation of terrestrial planets and multidisciplinary constraints on light elements in iron-dominated metallic cores. The classic four-stage model of terrestrial planet formation advocates slow and local accretion. Meanwhile, the pebble accretion model suggests fast accretion for planets, while the Grand Tack model provides heterogeneous accretion mechanisms.
Terrestrial planets and small interstellar bodies may have experienced at least some degree of partial melting due to the three primary energy sources (i.e., the decay of short-lived radioactive nuclides, the kinetic energy delivered by impacts, and the conversion of gravitational potential energy). Together with metal-silicate separation mechanisms, the magma ocean theory depicts the pattern of core formation in terrestrial planets.
Several hypotheses have been proposed to explain the concentration of siderophile elements in the mantle, including the single-stage, continuous, and multistage core formation models, and the late-veneer model. Some light elements have been postulated in the core to account for Earth’s outer core density deficit.
A plethora of constraints on the species and concentration of light elements have been put forward from the perspectives of cosmochemical and geochemical fingerprints, geophysical observations, mineral physics, numerical modeling, and theoretical prediction. Si and O may be the two leading candidates for Earth’s outer core light elements; however, it still remains an open question. S is another potential light element in Earth’s core, most likely with less than 2 wt%. Other light elements including H and C, may not exceed 1 wt% in the core.
Moreover, the accretion and differentiation history would provide some clues to light elements in other terrestrial planetary cores. In principle, a larger heliocentric distance corresponds to accretion from more oxidized materials, leading to a higher S concentration in the Martian core. On the contrary, Mercury is close to the Sun and has accreted from more reduced materials, resulting in more Si in the core.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28