(Peer-Reviewed) Vortex-field enhancement through high-threshold geometric metasurface
Qingsong Wang ¹ ², Yao Fang ¹ ², Yu Meng ¹ ², Han Hao ¹ ² ³, Xiong Li ¹ ² ³, Mingbo Pu ¹ ² ³ ⁴, Xiaoliang Ma ¹ ² ³, Xiangang Luo ¹ ² ³
¹ National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光场调控科学技术全国重点实验室
² State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 微细加工光学技术国家重点实验室
³ College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学材料科学与光电技术学院
⁴ Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 矢量光场研究中心
Opto-Electronic Advances, 2024-09-10
Abstract
Intense vortex beam is expected to empower captivating phenomena and applications in high power laser-matter interactions. Currently, the superposition of multiple vortex beams has shown the unique ability to tailor and enhance the vortex field.
However, traditional strategies to generate such beams suffer from large volume or/and low laser-induced damage threshold, hindering the practical widespread applications. Herein, a single high-threshold metasurface is proposed and experimentally demonstrated for the generation and superposition of multiple collinear vortex beams. This scheme takes advantage of the high conversion efficiency of phase-only modulation in the metasurface design by adopting the concept of a sliced phase pattern in the azimuthal direction.
An optical hot spot with an enhanced intensity and steady spatial propagation is experimentally achieved. Moreover, femtosecond laser-induced birefringent nanostructures embedded in silica glass are utilized as the building block with high optical efficiency. Transmittance greater than 99.4% in the near-infrared range and laser-induced damage threshold as high as 68.0 J/cm2 (at 1064 nm, 6 ns) are experimentally verified.
Considering these remarkable performances, the demonstrated high-threshold metasurface has promising applications in a host of high-power laser fields.
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28
Multifunctional mixed analog/digital signal processor based on integrated photonics
Yichen Wu, Qipeng Yang, Bitao Shen, Yuansheng Tao, Xuguang Zhang, Zihan Tao, Luwen Xing, Zhangfeng Ge, Tiantian Li, Bowen Bai, Haowen Shu, Xingjun Wang
Opto-Electronic Science
2024-08-16