Year
Month
(Preprint) Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling
Lingzhi Wang ¹, Jing Li 李菁 ², Xingshan Zeng 曾幸山 ³, Kam-Fai Wong 黄锦辉 ¹
¹ The Chinese University of Hong Kong, Hong Kong, China
中国 香港 香港中文大学
² The Hong Kong Polytechnic University, Hong Kong, China
中国 香港 香港理工大学
³ Huawei Noah’s Ark Lab, Hong Kong, China
中国 香港 华为诺亚方舟实验室
arXiv, 2021-08-18
Abstract

With the increasing popularity of social media, online interpersonal communication now plays an essential role in people's everyday information exchange. Whether and how a newcomer can better engage in the community has attracted great interest due to its application in many scenarios. Although some prior works that explore early socialization have obtained salient achievements, they are focusing on sociological surveys based on the small group.

To help individuals get through the early socialization period and engage well in online conversations, we study a novel task to foresee whether a newcomer's message will be responded to by other participants in a multi-party conversation (henceforth \textbf{Successful New-entry Prediction}). The task would be an important part of the research in online assistants and social media. To further investigate the key factors indicating such engagement success, we employ an unsupervised neural network, Variational Auto-Encoder (\textbf{VAE}), to examine the topic content and discourse behavior from newcomer's chatting history and conversation's ongoing context. Furthermore, two large-scale datasets, from Reddit and Twitter, are collected to support further research on new-entries.

Extensive experiments on both Twitter and Reddit datasets show that our model significantly outperforms all the baselines and popular neural models. Additional explainable and visual analyses on new-entry behavior shed light on how to better join in others' discussions.
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_1
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_2
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_3
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_4
  • Three-dimensional multichannel waveguide grating filters
  • Si-Yu Yin, Qi Guo, Shan-Ren Liu, Ju-Wei He, Yong-Sen Yu, Zhen-Nan Tian, Qi-Dai Chen
  • Opto-Electronic Science
  • 2024-08-14
  • Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
  • Shibin Jiang, Wenjun Deng, Zhanshan Wang, Xinbin Cheng, Din Ping Tsai, Yuzhi Shi, Weiming Zhu
  • Opto-Electronic Science
  • 2024-07-26
  • Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
  • Zuntian Chu, Xinqi Cai, Ruichao Zhu, Tonghao Liu, Huiting Sun, Tiefu Li, Yuxiang Jia, Yajuan Han, Shaobo Qu, Jiafu Wang
  • Opto-Electronic Advances
  • 2024-07-26
  • Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
  • Lei Zhang, Yuqi Zhen, Limin Tong
  • Opto-Electronic Science
  • 2024-07-26
  • Soliton microcomb generation by cavity polygon modes
  • Botao Fu, Renhong Gao, Ni Yao, Haisu Zhang, Chuntao Li, Jintian Lin, Min Wang, Lingling Qiao, Ya Cheng
  • Opto-Electronic Advances
  • 2024-07-25
  • Focus control of wide-angle metalens based on digitally encoded metasurface
  • Yi Chen, Simeng Zhang, Ying Tian, Chenxia Li, Wenlong Huang, Yixin Liu, Yongxing Jin, Bo Fang, Zhi Hong, Xufeng Jing
  • Opto-Electronic Advances
  • 2024-07-23
  • Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
  • Sören im Sande, Yadong Deng, Sergey I. Bozhevolnyi, Fei Ding
  • Opto-Electronic Advances
  • 2024-07-23
  • An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption
  • Ang Li, Yifan Wu, Chang Wang, Feixia Bao, Zongyin Yang, Shilong Pan
  • Opto-Electronic Advances
  • 2024-07-17
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05



  • Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks                                DRVI: Dual Refinement for Video Interpolation
    About
    |
    Contact
    |
    Copyright © PubCard