(Peer-Reviewed) Dynamic Color Transform Networks for Wheat Head Detection
Chengxin Liu 刘承鑫, Kewei Wang, Hao Lu 陆昊, Zhiguo Cao 曹治国
Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
中国 武汉 华中科技大学人工智能与自动化学院 图像信息处理与智能控制教育部重点实验室
Abstract
Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances.
In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters.
In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31