Year
Month
(Peer-Reviewed) Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Jiangbo Lyu 吕江泊 ¹ ², Tao Zhu 朱涛 ¹ ², Yan Zhou 周延 ¹, Zhenmin Chen 陈震旻 ¹, Yazhi Pi 皮雅稚 ¹, Zhengtong Liu 刘政通 ¹, Xiaochuan Xu 徐小川 ², Ke Xu 徐科 ², Xu Ma 马旭 ³, Lei Wang 王磊 ¹, Zizheng Cao 曹子峥 ¹, Shaohua Yu 余少华 ¹
¹ Peng Cheng Laboratory, Shenzhen 518055, China
中国 深圳 鹏城实验室
² Department of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
中国 深圳 哈尔滨工业大学(深圳)电子与信息工程学院
³ Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院 光电成像技术与系统教育部重点实验室
Opto-Electronic Science, 2024-01-09
Abstract

Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices. Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic materials such as lithium niobate (LN). To the best of our knowledge, this work proposes for the first time the inverse design method for anisotropic materials to optimize the structure of anisotropic-material based photonics devices.

Specifically, the orientation dependent properties of anisotropic materials are included in the adjoint method, which provides a more precise prediction of light propagation within such materials. The proposed method is used to design ultra-compact wavelength division demultiplexers in the X-cut thin-film lithium niobate (TFLN) platform.

By benchmarking the device performances of our method with those of classical scalar-based inverse design, we demonstrate that this method properly addresses the critical issue of material anisotropy in the X-cut TFLN platform.

This proposed method fills the gap of inverse design of anisotropic materials based photonic devices, which finds prominent applications in TFLN platforms and other anisotropic-material based photonic integration platforms.
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer_1
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer_2
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer_3
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Flat soliton microcomb source                                Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
    About
    |
    Contact
    |
    Copyright © PubCard