Year
Month
(Peer-Reviewed) Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Yichao Liu 刘一超, Xiaomin Ma 马晓敏, Kun Chao 晁坤, Fei Sun 孙非, Zihao Chen 陈子豪, Jinyuan Shan 鄯晋媛, Hanchuan Chen 陈汉川, Gang Zhao 赵港, Shaojie Chen 陈韶婕
Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
中国 太原 太原理工大学电子信息与光学工程学院 新型传感器和智能控制教育部和山西省重点实验室
Opto-Electronic Science, 2024-02-29
Abstract

Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems, aerospace equipment, biochemical productions, etc. For on-chip systems with high integration level, the precise and efficient control of the propagation of electromagnetic waves and heat fluxes simultaneously is particularly important.

In this study, we propose a graphical designing method (i.e., thermal-electromagnetic surface transformation) based on thermal-electromagnetic null medium to simultaneously control the propagation of electromagnetic waves and thermal fields according to the pre-designed paths. A thermal-electromagnetic cloak, which can create a cloaking effect on both electromagnetic waves and thermal fields simultaneously, is designed by thermal-electromagnetic surface transformation and verified by both numerical simulations and experimental measurements.

The thermal-electromagnetic surface transformation proposed in this study provides a new methodology for simultaneous controlling on electromagnetic and temperature fields, and may have significant applications in improving thermal-electromagnetic compatibility problem, protecting of thermal-electromagnetic sensitive components, and improving efficiency of energy usage for complex on-chip systems.
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium_1
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium_2
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium_3
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium_4
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Miniature meta-device for dynamic control of Airy beam
  • Qichang Ma, Guixin Li
  • Opto-Electronic Advances
  • 2024-08-28
  • Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
  • Xuan Tian, Runze Li, Tong Peng, Yuge Xue, Junwei Min, Xing Li, Chen Bai, Baoli Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Smart photonic wristband for pulse wave monitoring
  • Renfei Kuang, Zhuo Wang, Lin Ma, Heng Wang, Qingming Chen, Arnaldo Leal Junior, Santosh Kumar, Xiaoli Li, Carlos Marques, Rui Min
  • Opto-Electronic Science
  • 2024-08-20



  • Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator                                Data-driven polarimetric imaging: a review
    About
    |
    Contact
    |
    Copyright © PubCard