(Peer-Reviewed) Microchip imaging cytometer: making healthcare available, accessible, and affordable
Xilong Yuan, Todd Darcie, Ziyin Wei, J Stewart Aitchison
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
Opto-Electronic Advances, 2022-08-03
Abstract
The Microchip Imaging Cytometer (MIC) is a class of integrated point-of-care detection systems based on the combination of optical microscopy and flow cytometry. MIC devices have the attributes of portability, cost-effectiveness, and adaptability while providing quantitative measurements to meet the needs of laboratory testing in a variety of healthcare settings.
Based on the use of microfluidic chips, MIC requires less sample and can complete sample preparation automatically. Therefore, they can provide quantitative testing results simply using a finger prick specimen. The decreased reagent consumption and reduced form factor also help improve the accessibility and affordability of healthcare services in remote and resource-limited settings.
In this article, we review recent developments of the Microchip Imaging Cytometer from the following aspects: clinical applications, microfluidic chip integration, imaging optics, and image acquisition. Following, we provide an outlook of the field and remark on promising technologies that may enable significant progress in the near future.
Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
Opto-Electronic Advances
2024-07-05