(Preprint) Context-aware Telco Outdoor Localization
Yige Zhang 张奕格 ¹, Weixiong Rao 饶卫雄 ¹, Mingxuan Yuan 袁明轩 ², Jia Zeng 曾嘉 ², Pan Hui 许彬 ³ ⁴
¹ School of Software Engineering, Tongji University, Shanghai, China
中国 上海 同济大学软件学院
² Huawei Noahs Ark Lab, Hong Kong
香港 华为诺亚方舟实验室
³ Department of Computer Science and Engineering, Hong Kong University of Science and Technology
香港科技大学计算机科学与工程系
⁴ Department of Computer Science, University of Helsinki
arXiv, 2021-08-24
Abstract
Recent years have witnessed the fast growth in telecommunication (Telco) techniques from 2G to upcoming 5G. Precise outdoor localization is important for Telco operators to manage, operate and optimize Telco networks. Differing from GPS, Telco localization is a technique employed by Telco operators to localize outdoor mobile devices by using measurement report (MR) data. When given MR samples containing noisy signals (e.g., caused by Telco signal interference and attenuation), Telco localization often suffers from high errors.
To this end, the main focus of this paper is how to improve Telco localization accuracy via the algorithms to detect and repair outlier positions with high errors. Specifically, we propose a context-aware Telco localization technique, namely RLoc, which consists of three main components: a machine-learning-based localization algorithm, a detection algorithm to find flawed samples, and a repair algorithm to replace outlier localization results by better ones (ideally ground truth positions).
Unlike most existing works to detect and repair every flawed MR sample independently, we instead take into account spatio-temporal locality of MR locations and exploit trajectory context to detect and repair flawed positions. Our experiments on the real MR data sets from 2G GSM and 4G LTE Telco networks verify that our work RLoc can greatly improve Telco location accuracy. For example, RLoc on a large 4G MR data set can achieve 32.2 meters of median errors, around 17.4% better than state-of-the-art.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28