Year
Month
(Preprint) Context-aware Telco Outdoor Localization
Yige Zhang 张奕格 ¹, Weixiong Rao 饶卫雄 ¹, Mingxuan Yuan 袁明轩 ², Jia Zeng 曾嘉 ², Pan Hui 许彬 ³ ⁴
¹ School of Software Engineering, Tongji University, Shanghai, China
中国 上海 同济大学软件学院
² Huawei Noahs Ark Lab, Hong Kong
香港 华为诺亚方舟实验室
³ Department of Computer Science and Engineering, Hong Kong University of Science and Technology
香港科技大学计算机科学与工程系
⁴ Department of Computer Science, University of Helsinki
arXiv, 2021-08-24
Abstract

Recent years have witnessed the fast growth in telecommunication (Telco) techniques from 2G to upcoming 5G. Precise outdoor localization is important for Telco operators to manage, operate and optimize Telco networks. Differing from GPS, Telco localization is a technique employed by Telco operators to localize outdoor mobile devices by using measurement report (MR) data. When given MR samples containing noisy signals (e.g., caused by Telco signal interference and attenuation), Telco localization often suffers from high errors.

To this end, the main focus of this paper is how to improve Telco localization accuracy via the algorithms to detect and repair outlier positions with high errors. Specifically, we propose a context-aware Telco localization technique, namely RLoc, which consists of three main components: a machine-learning-based localization algorithm, a detection algorithm to find flawed samples, and a repair algorithm to replace outlier localization results by better ones (ideally ground truth positions).

Unlike most existing works to detect and repair every flawed MR sample independently, we instead take into account spatio-temporal locality of MR locations and exploit trajectory context to detect and repair flawed positions. Our experiments on the real MR data sets from 2G GSM and 4G LTE Telco networks verify that our work RLoc can greatly improve Telco location accuracy. For example, RLoc on a large 4G MR data set can achieve 32.2 meters of median errors, around 17.4% better than state-of-the-art.
Context-aware Telco Outdoor Localization_1
Context-aware Telco Outdoor Localization_2
Context-aware Telco Outdoor Localization_3
Context-aware Telco Outdoor Localization_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • A Proactive Failure Tolerant Mechanism for SSDs Storage Systems based on Unsupervised Learning                                CMML: Contextual Modulation Meta Learning for Cold-Start Recommendation
    About
    |
    Contact
    |
    Copyright © PubCard