Year
Month
(Peer-Reviewed) Power grid fault diagnosis based on a deep pyramid convolutional neural network
Xu Zhang 张旭, Huiting Zhang 张慧婷, Dongying Zhang 张东英, Yixian Wang 王仪贤, Ruiting Ding 丁睿婷, Yuchuan Zheng 郑钰川, Yongxu Zhang 张永旭
School of Electrical & Electronic Engineering, North China Electric Power University, Beijing, 102206, China
中国 北京 华北电力大学电气与电子工程学院
Abstract

Existing power grid fault diagnosis methods rely on manual experience to design diagnosis models, lack the ability to extract fault knowledge, and are difficult to adapt to complex and changeable engineering sites. In this context, this paper proposes a power grid fault diagnosis method based on a deep pyramid convolutional neural network for the alarm information set.

This approach uses the deep feature extraction ability of the network to extract fault feature knowledge from alarm information texts and achieve end-to-end fault classification and fault device identification. First, a deep pyramid convolutional neural network model for extracting the overall characteristics of fault events is constructed to identify fault types. Second, a deep pyramidal convolutional neural network model for alarm information text is constructed, the text description characteristics associated with alarm information text are extracted, the key information corresponding to faults in the alarm information set is identified, and suspicious faulty devices are selected.

Then, a fault device identification strategy that integrates fault-type and time sequence priorities is proposed to identify faulty devices. Finally, the actual fault cases and the fault cases generated by simulation are studied, and the results verify the effectiveness and practicability of the method presented in this paper.
Power grid fault diagnosis based on a deep pyramid convolutional neural network_1
Power grid fault diagnosis based on a deep pyramid convolutional neural network_2
Power grid fault diagnosis based on a deep pyramid convolutional neural network_3
Power grid fault diagnosis based on a deep pyramid convolutional neural network_4
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Miniature meta-device for dynamic control of Airy beam
  • Qichang Ma, Guixin Li
  • Opto-Electronic Advances
  • 2024-08-28
  • Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
  • Xuan Tian, Runze Li, Tong Peng, Yuge Xue, Junwei Min, Xing Li, Chen Bai, Baoli Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Smart photonic wristband for pulse wave monitoring
  • Renfei Kuang, Zhuo Wang, Lin Ma, Heng Wang, Qingming Chen, Arnaldo Leal Junior, Santosh Kumar, Xiaoli Li, Carlos Marques, Rui Min
  • Opto-Electronic Science
  • 2024-08-20



  • Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting                                Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes
    About
    |
    Contact
    |
    Copyright © PubCard