(Peer-Reviewed) Power grid fault diagnosis based on a deep pyramid convolutional neural network
Xu Zhang 张旭, Huiting Zhang 张慧婷, Dongying Zhang 张东英, Yixian Wang 王仪贤, Ruiting Ding 丁睿婷, Yuchuan Zheng 郑钰川, Yongxu Zhang 张永旭
School of Electrical & Electronic Engineering, North China Electric Power University, Beijing, 102206, China
中国 北京 华北电力大学电气与电子工程学院
Abstract
Existing power grid fault diagnosis methods rely on manual experience to design diagnosis models, lack the ability to extract fault knowledge, and are difficult to adapt to complex and changeable engineering sites. In this context, this paper proposes a power grid fault diagnosis method based on a deep pyramid convolutional neural network for the alarm information set.
This approach uses the deep feature extraction ability of the network to extract fault feature knowledge from alarm information texts and achieve end-to-end fault classification and fault device identification. First, a deep pyramid convolutional neural network model for extracting the overall characteristics of fault events is constructed to identify fault types. Second, a deep pyramidal convolutional neural network model for alarm information text is constructed, the text description characteristics associated with alarm information text are extracted, the key information corresponding to faults in the alarm information set is identified, and suspicious faulty devices are selected.
Then, a fault device identification strategy that integrates fault-type and time sequence priorities is proposed to identify faulty devices. Finally, the actual fault cases and the fault cases generated by simulation are studied, and the results verify the effectiveness and practicability of the method presented in this paper.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28