Year
Month
(Peer-Reviewed) Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River
Juan-juan Fang 方娟娟 ¹, Yun-ping Yang 杨云平 ² ³, Meng-lin Jia 贾梦琳 ³, Yu-de Zhu 朱玉德 ², Jian-jun Wang 王建军 ²
¹ State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
中国 武汉 武汉大学 水资源与水电工程科学国家重点实验室
² Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China
中国 天津 交通运输部 天津水运工程科学研究院
³ State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
中国 南京 河海大学水文水资源与水利工程科学国家重点实验室
Abstract

Hydrological, sediment, and bathymetric data of the Shashi Reach in the middle Yangtze River for the period of 1975e2018 were collected, and the characteristics of low water level changes and their impacts on utilization of water depth for navigation were investigated. The results showed that, during the study period, the Shashi Reach riverbed was significantly scoured and incised, with cross-sectional profiles showing overall narrowing and deepening. This indicated a strong potential to improve the water depth of the channel.

The analysis of the temporal variation of in-channel topographical features showed that the Taipingkou diara underwent siltation and erosion, with its head gradually scoured and relocated downstream after 2008, and the Sanbatan diara continued to shrink and migrate leftwards. Low water levels with the same flow rate over the study period decreased. For instance, from 2003 to 2020, the water level at the Shashi hydrological station decreased to 1.37 m with a flow rate of 6 000 m3/s.

Furthermore, the designed minimum navigable water level of the Shashi Reach was approximately 2.11 m lower than the recommended level. In terms of utilization of the channel water depth, continuous scouring of the river channel is expected to result in a reduction in discharge at the Taipingkou mouth, which will improve the water depth conditions of the channel during the dry season in the Shashi Reach.

With several channel regulation projects, the 3.5-m depth of the Shashi Reach would basically be unobstructed. This promotes utilization of the shipping route from the Taipingkou south branch to the Sanbatan north branch as the main navigation channel during the dry season. Considering the factors of current water depth and the clear width limitation of the navigation hole at the Jingzhou Yangtze River Bridge, this route can still be favored as the main navigation channel with a 4.5-m depth during the dry season.
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River_1
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River_2
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River_3
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems                                Polarization-switchable plasmonic emitters based on laser-induced bubbles
    About
    |
    Contact
    |
    Copyright © PubCard