(Peer-Reviewed) Switchable diurnal radiative cooling by doped VO2
Minkyung Kim ¹, Dasol Lee ¹, Younghwan Yang ¹, Junsuk Rho ¹ ²
¹ Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
² Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
Opto-Electronic Advances, 2021-05-20
Abstract
This paper presents design and simulation of a switchable radiative cooler that exploits phase transition in vanadium di-oxide to turn on and off in response to temperature. The cooler consists of an emitter and a solar reflector separated by aspacer. The emitter and the reflector play a role of emitting energy in mid-infrared and blocking incoming solar energy inultraviolet to near-infrared regime, respectively.
Because of the phase transition of doped vanadium dioxide at room tem-perature, the emitter radiates its thermal energy only when the temperature is above the phase transition temperature. The feasibility of cooling is simulated using real outdoor conditions. We confirme that the switchable cooler can keep adesired temperature, despite change in environmental conditions.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28