(Peer-Reviewed) Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
Xuan Tian 田璇 ¹ ², Runze Li 李润泽 ¹, Tong Peng 彭彤 ¹, Yuge Xue 薛雨阁 ¹ ², Junwei Min 闵俊伟 ¹, Xing Li 栗星 ¹, Chen Bai 柏晨 ¹ ², Baoli Yao 姚保利 ¹ ²
¹ State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
中国 西安 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室
² University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学
Opto-Electronic Advances, 2024-08-28
Abstract
Digital in-line holographic microscopy (DIHM) is a widely used interference technique for real-time reconstruction of living cells’ morphological information with large space-bandwidth product and compact setup. However, the need for a larger pixel size of detector to improve imaging photosensitivity, field-of-view, and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.
Additionally, the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image. The deep learning (DL) approach has emerged as a powerful tool for phase retrieval in DIHM, effectively addressing these challenges. However, most DL-based strategies are data-driven or end-to-end net approaches, suffering from excessive data dependency and limited generalization ability. Herein, a novel multi-prior physics-enhanced neural network with pixel super-resolution (MPPN-PSR) for phase retrieval of DIHM is proposed. It encapsulates the physical model prior, sparsity prior and deep image prior in an untrained deep neural network.
The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods. With the capabilities of pixel super-resolution, twin-image elimination and high-throughput jointly from a single-shot intensity measurement, the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28
Multifunctional mixed analog/digital signal processor based on integrated photonics
Yichen Wu, Qipeng Yang, Bitao Shen, Yuansheng Tao, Xuguang Zhang, Zihan Tao, Luwen Xing, Zhangfeng Ge, Tiantian Li, Bowen Bai, Haowen Shu, Xingjun Wang
Opto-Electronic Science
2024-08-16