Year
Month
(Peer-Reviewed) Polariton lasing in Mie-resonant perovskite nanocavity
Mikhail A. Masharin ¹ ², Daria Khmelevskaia ², Valeriy I. Kondratiev ², Daria I. Markina ², Anton D. Utyushev ², Dmitriy M. Dolgintsev ², Alexey D. Dmitriev ², Vanik A. Shahnazaryan ² ³, Anatoly P. Pushkarev ², Furkan Isik ¹ ⁴, Ivan V. Iorsh ² ⁵, Ivan A. Shelykh ³ ⁶, Hilmi V. Demir ¹ ⁴, Anton K. Samusev ² ⁷, Sergey V. Makarov ² ⁸
¹ UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara 06800, Turkey
² ITMO University, School of Physics and Engineering, St. Petersburg 197101, Russia
³ Abrikosov Center for Theoretical Physics, MIPT, Dolgoprudnyi, Moscow Region 141701, Russia
⁴ LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
⁵ Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario K7L 3N6, Canada
⁶ Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
⁷ Experimentelle Physik 2, Technische Universität Dortmund, Dortmund 44227, Germany
⁸ Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
中国 青岛 哈尔滨工程大学青岛创新发展基地
Opto-Electronic Advances, 2024-04-25
Abstract

Deeply subwavelength lasers (or nanolasers) are highly demanded for compact on-chip bioimaging and sensing at the nanoscale. One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.

Here we exploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53 μm from its ultra-small (≈0.007 μm3 or ≈λ3/20) semiconductor nanocavity. The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct comparison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.

Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy (≈35 meV), refractive index (>2.5 at low temperature), and luminescence quantum yield of CsPbBr3, but also by the optimization of polaritons condensation on the Mie resonances with quality factors improved by the metallic substrate.

Moreover, the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3, which govern polaritons condensation path. Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially deposited on arbitrary surfaces, which makes them a versatile tool for integration with various on-chip systems.
Polariton lasing in Mie-resonant perovskite nanocavity_1
Polariton lasing in Mie-resonant perovskite nanocavity_2
Polariton lasing in Mie-resonant perovskite nanocavity_3
Polariton lasing in Mie-resonant perovskite nanocavity_4
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16



  • Fast source mask co-optimization method for high-NA EUV lithography                                High-Q resonant Terahertz metasurfaces
    About
    |
    Contact
    |
    Copyright © PubCard