(Peer-Reviewed) Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics
Fotis Fraggelakis ¹, George D. Tsibidis ¹ ², Emmanuel Stratakis ¹ ²
¹ Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, Heraklion 70013, Greece
² Department of Physics, University of Crete, Heraklion 71003, Greece
Opto-Electronic Advances, 2022-03-25
Abstract
We present a novel approach for tailoring the laser induced surface topography upon femtosecond (fs) pulsed laser irradiation. The method employs spatially controlled double fs laser pulses to actively regulate the hydrodynamic microfluidic motion of the melted layer that gives rise to the structures formation.
The pulse train used, in particular, consists of a previously unexplored spatiotemporal intensity combination including one pulse with Gaussian and another with periodically modulated intensity distribution created by Direct Laser Interference Patterning (DLIP). The interpulse delay is appropriately chosen to reveal the contribution of the microfluidic melt flow, while it is found that the sequence of the Gaussian and DLIP pulses remarkably influences the surface profile attained.
Results also demonstrate that both the spatial intensity of the double pulse and the effective number of pulses per irradiation spot can further be modulated to control the formation of complex surface morphologies. The underlying physical processes behind the complex patterns’ generation were interpreted in terms of a multiscale model combining electron excitation with melt hydrodynamics. We believe that this work can constitute a significant step forward towards producing laser induced surface structures on demand by tailoring the melt microfluidic phenomena.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31