Year
Month
(Peer-Reviewed) All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte
Yu Zhang ¹, Jie Xua ¹, Zhi Li ¹, Yanrong Wang ¹, Sijia Wang ², Xiaoli Dong 董晓丽 ¹, Yonggang Wang 王永刚 ¹
¹ Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
中国 上海复旦大学化学系、上海市分子催化和功能材料重点实验室、复旦大学新能源研究院、能源材料化学协同创新中心
² College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
中国 郑州 河南中医药大学药学院
Science Bulletin, 2021-08-17
Abstract

Aqueous Na-ion batteries have been extensively studied for large-scale energy storage systems. However, their wide application is still limited by their inferior cycle stability (< 3000 cycles) and poor temperature tolerance. Furthermore, many of the reported high rate behaviors are achieved at a low mass loading (<3 mg cm−2) of the electrodes. Herein, we propose an aqueous Na-ion battery which includes a Ni-based Prussian blue (NiHCF) cathode, a carbonyl-based organic compound, 5,7,12,14-pentacenetetrone (PT) anode and a “water-in-salt” electrolyte (17 mol kg−1 NaClO4 in water).

Its operation involves the reversible coordination reaction of the PT anode and the extraction/insertion of Na+ in the NiHCF cathode. It is demonstrated that the wide internal spaces of the PT anode and NiHCF cathode can not only buffer the volumetric change induced by Na+ storage, but also enable fast kinetics.

The full cell exhibits a supercapacitor-like rate performance of 50 A g−1 (corresponding to a discharge or charge within 6.3 s) and a super-long lifespan of 15,000 cycles. Moreover, the excellent rate performance can still be preserved even with a high mass loading of the electrodes (15 mgNiHCF cm−2 and 8 mgPT cm−2). Especially, the cell can work well in a wide temperature range, from −40 to 100 °C, showing a typical all-climate operation.
All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte_1
All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte_2
All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte_3
All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte_4
  • Three-dimensional multichannel waveguide grating filters
  • Si-Yu Yin, Qi Guo, Shan-Ren Liu, Ju-Wei He, Yong-Sen Yu, Zhen-Nan Tian, Qi-Dai Chen
  • Opto-Electronic Science
  • 2024-08-14
  • Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
  • Shibin Jiang, Wenjun Deng, Zhanshan Wang, Xinbin Cheng, Din Ping Tsai, Yuzhi Shi, Weiming Zhu
  • Opto-Electronic Science
  • 2024-07-26
  • Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
  • Zuntian Chu, Xinqi Cai, Ruichao Zhu, Tonghao Liu, Huiting Sun, Tiefu Li, Yuxiang Jia, Yajuan Han, Shaobo Qu, Jiafu Wang
  • Opto-Electronic Advances
  • 2024-07-26
  • Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
  • Lei Zhang, Yuqi Zhen, Limin Tong
  • Opto-Electronic Science
  • 2024-07-26
  • Soliton microcomb generation by cavity polygon modes
  • Botao Fu, Renhong Gao, Ni Yao, Haisu Zhang, Chuntao Li, Jintian Lin, Min Wang, Lingling Qiao, Ya Cheng
  • Opto-Electronic Advances
  • 2024-07-25
  • Focus control of wide-angle metalens based on digitally encoded metasurface
  • Yi Chen, Simeng Zhang, Ying Tian, Chenxia Li, Wenlong Huang, Yixin Liu, Yongxing Jin, Bo Fang, Zhi Hong, Xufeng Jing
  • Opto-Electronic Advances
  • 2024-07-23
  • Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
  • Sören im Sande, Yadong Deng, Sergey I. Bozhevolnyi, Fei Ding
  • Opto-Electronic Advances
  • 2024-07-23
  • An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption
  • Ang Li, Yifan Wu, Chang Wang, Feixia Bao, Zongyin Yang, Shilong Pan
  • Opto-Electronic Advances
  • 2024-07-17
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05



  • Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder                                Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells
    About
    |
    Contact
    |
    Copyright © PubCard