Year
Month
(Peer-Reviewed) Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core
Jianying Jing 井建迎 ¹ ² ³, Kun Liu 刘琨 ¹ ² ³, Junfeng Jiang 江俊峰 ¹ ² ³, Tianhua Xu 徐天华 ¹ ² ³, Shuang Wang 王双 ¹ ² ³, Tiegen Liu 刘铁根 ¹ ² ³
¹ School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
中国 天津 天津大学精密仪器与光电子工程学院
² Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
中国 天津 光电信息技术教育部重点实验室(天津大学)
³ Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
中国 天津 天津大学光纤传感研究所 天津市光纤传感工程中心
Opto-Electronic Advances, 2023-06-25
Abstract

A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics. The customized design of the resonance curve aiming at specific detection requirements can be achieved. According to the model, a probe-type nano-modified fiber optic configurable plasmonic resonance (NMF-CPR) sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332–1.3432 corresponding to the low-concentration biomarker solution.

The new-type sensing structure avoids excessive broadening and redshift of the resonance dip, which provides more possibilities for the surface modification of other functional nanomaterials. The tip hot spots in nanogaps between the Au layer and Au nanostars (AuNSs), the tip electric field enhancement of AuNSs, and the high carrier mobility of the WSe2 layer synergistically and significantly enhance the sensitivity of the sensor. Experimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU−1, respectively, which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.

The results achieve good agreements with numerical simulations, demonstrate a better level compared to similar reported studies, and verify the correctness of the dispersion model. The detection resolution of the sensor reaches up to 2.00×10−5 RIU, which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor. This indicates a high detection accuracy of the sensor.

The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation, which enables the sensor with high stability. Furthermore, the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.
Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core_1
Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core_2
Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core_3
Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core_4
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
  • Xin Xu, Qin Luo, Jixiang Wang, Yahui Song, Hong Ye, Xin Zhang, Yi He, Minxuan Sun, Ruobing Zhang, Guohua Shi
  • Opto-Electronic Advances
  • 2024-06-11
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04



  • Accurate medium-range global weather forecasting with 3D neural networks                                In-flow holographic tomography boosts lipid droplet quantification
    About
    |
    Contact
    |
    Copyright © PubCard